

Justice, Profound Neurological Injury, and Brain Death

MICHAEL NAIR-COLLINS AND JAMES M. HITT

The impairments associated with what's known as the "vegetative state" (henceforth VS) are devastating. A VS patient, such as the well-known Terri Schiavo, lacks all higher-order cognitive functions; presumably she is completely unaware of herself or her surroundings and cannot engage with her environment in any meaningful way. She has no thoughts, no memories, no purposeful behavior, and will likely never recover, although she maintains the ability to breathe on her own. A brain-dead patient shares these characteristics, except the brain-dead patient also lacks the ability to perform "vegetative" functions such as autonomic regulation of hormones, blood pressure, and ventilation. The brain-dead patient is legally dead, whereas the VS patient is not. Issues of legality aside, these patients have much in common. They both lack (or can be presumed to lack) psychological states, and many would say that the *person* that once was no longer exists, in both cases. This unusual situation of the presence of some biological function coupled with the absence of psychological function—what presumably makes us persons in any meaningful sense—creates difficult questions regarding the allocation of scarce medical resources.

Given the severe impairments and presumed lack of psychological function in such patients, it is natural to wonder: Does social justice demand that resources *not* be allocated to them? If those resources currently spent on maintaining the profoundly neurologically impaired in what may be termed a "minimal existence" were used elsewhere, they might have a much greater effect in curing or preventing illness, alleviating suffering, and so forth. Is it a fair allocation to spend an inordinate amount (or even any amount) of

resources on patients who many would say aren't even persons?

Several authors have expressed this concern. For example, Brody (1988) writes:

Other patients [without VS], who can benefit in substantial ways from access to health care, can be provided the time and resources freed if [the VS] patient dies. Even without a comprehensive theory of justice in the allocation of health care resources, it seems plausible to say that other patients have a greater entitlement to those resources.¹

Similarly, in a paper on the aspects of consciousness that should be considered morally relevant in the context of vegetative patients, Kahane and Savulescu mention, in passing, that "considerations of distributive justice may tell against continuing to sustain the life of such a [vegetative] patient at great cost" (Kahane & Savulescu 2009, 13). Dworkin too discounts the value one might attach to a being in VS. In considering what insurance would be prudent to purchase, Dworkin writes, "[i]t would be irrational for almost any twenty-five-year-old to insure himself as to provide for life-sustaining treatment if he falls into a persistent vegetative state" (Dworkin 2000, 313). Perhaps more strikingly, Veatch (1975, 2004) argues that vegetative patients should be considered legally dead, presumably implying that any use of resources on their behalf is unjust.

Similar questions arise in the context of the brain dead. Although a brain-dead individual is legally dead, nonetheless certain biological functions do remain, and some states make provisions for "reasonable accommodation" of the views of

486 DILEMMAS AND PRIORITIES

1 the patient or her caregivers in determining death
 2 (and hence, using medical resources on a brain-
 3 dead individual). The New York State Department
 4 of Health's *Guidelines for Determining Brain Death*
 5 (2005, 2–3), for example, includes the following
 6 clause:

7 Hospitals must establish written procedures
 8 for the reasonable accommodation of the indi-
 9 vidual's religious or moral objections to use of
 10 the brain death standard to determine death
 11 when such an objection has been expressed by
 12 the patient prior to the loss of decision-making
 13 capacity, or by the next of kin or other person
 14 closest to the individual. Policies may include
 15 specific accommodations, such as the continua-
 16 tion of artificial respiration under certain
 17 circumstances, as well as guidance on limits to
 18 accommodation.

19 The State of New Jersey has provisions that are
 20 stronger in this regard, in the 1991 New Jersey
 21 Declaration of Death Act:

22 The death of an individual shall not be declared
 23 upon the basis of neurological criteria pursuant
 24 to sections 3 and 4 of this act when the
 25 licensed physician authorized to declare death,
 26 has reason to believe, on the basis of information
 27 in the individual's available medical records, or
 28 information provided by a member of the indi-
 29 vidual's family or any other person knowledgeable
 30 about the individual's personal religious
 31 beliefs that such a declaration would violate the
 32 personal religious beliefs of the individual. In
 33 these cases, death shall be declared, and the
 34 time of death fixed, solely upon the basis of
 35 cardio-respiratory criteria pursuant to section
 36 2 of this act. (*New Jersey Declaration of Death*
 37 *Act* 1991, c. 90, s. 5)

38 Given the large amount of resources necessary
 39 to maintain a brain-dead individual—an ICU
 40 bed, a ventilator, and a large time commitment
 41 from ICU nursing staff—it is plausible to won-
 42 der whether social justice demands that scarce
 43 resources not be used in such a way. In this chap-
 44 ter we shall explore the issue of distributive justice
 45 as it arises in these contexts of profound neuro-
 46 logical impairment and brain death. We begin
 47 with a brief review of the medical/clinical back-
 48 ground on VS, brain death, and related states, and
 49 then move to the ethics of health care resource
 50 distribution. Ultimately, we argue that a position

of tolerance is the optimal one in these circum- 51
 stances. 52

MEDICAL BACKGROUND: 53
COMA, BRAIN DEATH, 54
VEGETATIVE STATE, 55
MINIMALLY CONSCIOUS 56
STATE, AND THE 57
LOCKED-IN STATE 58

We begin by distinguishing wakefulness from 59
 awareness. Wakefulness is linked to arousal, alert- 60
 ness, or the absence of sleep, but its presence does 61
 not imply cognition, mental content, or awareness 62
 of self or environment. While extremely rough, 63
 we trust that the intuitive distinction between 64
 being awake but not aware, and being aware of 65
 one's self and environment, is relatively clear. This 66
 distinction is the basis for much of what follows. 67

Coma is a pathological state of eyes-closed 68
 unresponsiveness; comatose patients have a sleep- 69
 like appearance and do not respond to sensory 70
 or noxious stimuli. Wakefulness is absent and, 71
 presumably, awareness is absent as well. True 72
 sleep-like coma almost never lasts for more than 73
 2 to 4 weeks (Bernat 2006, 1181–1182; Plum & 74
 Posner 1980, 3), before progressing to the vegeta- 75
 tive or minimally conscious state, to recovery, or 76
 to death. 77

Brain death is, in essence, a form of coma. In 78
 brain death, all functions of the brain have ceased 79
 irreversibly. The patient is in a state of eyes-closed 80
 unresponsiveness, is apneic, and lacks all cranial 81
 nerve reflexes. A brain-dead patient, if mechani- 82
 cally ventilated, can maintain spontaneous circu- 83
 lation, cellular respiration, and spinal reflexes, but 84
 cannot carry out brain stem-mediated autonomic 85
 functions such as thermal regulation and blood 86
 pressure control. It is widely maintained that a 87
 brain dead-individual is dead,² although it is also 88
 well understood that some biological functions, 89
 such as those mentioned above, do remain. Brain 90
 death is not typically described as a form of coma, 91
 of course, because comatose patients are alive 92
 whereas brain-dead patients are thought to be 93
 dead. 94

The non-brain-dead comatose patient who 95
 does not recover awareness typically progresses to 96
 VS, which is a state of wakefulness in the absence 97
 of awareness. The vegetative patient exhibits irreg- 98
 ular sleep–wake cycles, lies with her eyes open 99
 while awake, and breathes spontaneously. She has 100
 preserved autonomic and hypothalamic function 101
 and cranial nerve reflexes, but does not exhibit 102
 any evidence of awareness of self or environment 103

1 through sustained, reproducible, apparently purposeful or voluntary behavior in response to stimuli. Importantly, even though a VS patient may lie with her eyes open, responses to visual cues are absent. Consistent, sustained, reproducible visual tracking is considered evidence inconsistent with VS (Jennett & Plum 1972; Multi-Society Task Force on PVS 1994a, 1994b).

9 Some patients progress, either from VS or directly from coma, to a state of severely impaired responsiveness resembling VS, except that they show some limited evidence of awareness. This is known as the *minimally conscious state* (MCS). 14 The patient in an MCS, like that in VS, exhibits sleep-wake cycles, spontaneous breathing, preserved autonomic and hypothalamic functions, and cranial nerve reflexes. Additionally, she is able 18 to gesture yes/no answers, show reproducible visual tracking, or reach for or grasp objects in a way 20 demonstrating a cognitive association between 21 the object's size, shape, or location, relative to the 22 patient (Giacino 2004; Giacino et al. 2002). Thus, 23 the MCS patient does exhibit limited evidence of 24 awareness of self and environment, in addition 25 to wakefulness.

26 Finally, a distinct neurological disorder that 27 is sometimes confused with coma, VS, or MCS is 28 known as the *locked-in state*. This is not a disorder 29 of consciousness at all; it is instead a movement 30 disorder characterized by nearly complete paralysis. 31 However, the patient does retain the capacity 32 for vertical eye movements and eye opening when 33 asked, and maintains normal cognitive function 34 (Bernat 2006, 1184).

35 DESCRIPTIVE 36 DISTINCTIONS AND 37 NORMATIVE 38 CONCLUSIONS

39 In theory, there is a great difference between the 40 vegetative and minimally conscious patient. While 41 the vegetative patient maintains sleep-wake cycles 42 and some primitive neurological functions, presumably 43 she is also entirely unaware of herself and 44 her surroundings. She lacks all thought and all 45 mental content; she has no goals or desires, no 46 fears, no pain, and no interests whatsoever. The 47 *person*, the subject of experience or the experiencing 48 self, no longer exists.³ There is, as one might 49 say, "no one there."

50 By contrast, the minimally conscious patient 51 does show some limited evidence of awareness. 52 She is able to follow some simple commands and 53 respond to her environment in some meaningful

ways. Therefore we may presume a limited amount of thought or other psychological states, and hence, at least in the psychological sense of the term, we should conclude that the *person*, that locus of experience or psychological states, exists.

The presumed difference between the VS and MCS patient lies in the absence or presence of psychological states, which is a descriptive, non-normative distinction. However, supposing this distinction to be accurate, the normative concerns about social justice and the distribution of resources mentioned at the outset of this chapter become pressing. Namely, if the VS patient lacks all psychological states, then she feels no pain, has no capacity for awareness of self or others, and has no memory, desires, or thoughts. Therefore presumably she has no interests and is no longer a locus of moral value, at least not in the same way that a non-VS individual is a locus of moral value. As a result, there is *prima facie* reason to suggest that justice demands that resources not be allocated to the VS patient. On the other hand, there is less reason to suggest this with respect to the MCS patient, since she does enjoy some psychological states, and so presumably has interests, at the very least in not feeling bodily pain, and perhaps she has further interests in fulfilling her goals.⁴

We need not adjudicate here whether the normative conclusion—that VS patients have no interests and are *prima facie* entitled to fewer or no resources on these grounds—follows from the descriptive distinction between the presence and absence of psychological states. Instead, we suggest that for this basic argument to direct practical decision-making on resource allocation, there should be at least a reasonable (but not absolute) level of confidence in the claim that patients diagnosed as VS do in fact lack all psychological states. If we cannot make that claim with reasonable confidence, then the normative conclusions suggested above have no practical import in actual decision-making.

There are two reasons why we should currently lack such confidence. First, we don't yet know enough about the many forms of consciousness and their neurological substrates in general, nor the specific pathology of VS in particular, to ground practical allocation decisions.⁵ Second, the misdiagnosis rate for VS is unacceptably high. We shall begin with the former concern.

There are many different aspects of consciousness, and the medical term "awareness" seems to capture a conglomeration of several. Specifically, it

1 seems to involve *phenomenal consciousness*, which
 2 involves the qualitative “raw feel,” or the “what it is
 3 like to be” a conscious subject having a conscious
 4 experience (Block 1995, Nagel 1974). It also seems
 5 to capture *access consciousness*, or the ability to
 6 integrate sensory and mnemonic information in
 7 the guidance of goal-oriented behavior (Block
 8 1995). Additionally, the medical term “awareness”
 9 may involve both *transitive consciousness*, or con-
 10 sciousness of something, as well as *state consciousness*,
 11 which is a property of conscious mental
 12 states, not persons (Rosenthal 1997). By possibly
 13 conflating these, it isn’t clear to what the claim
 14 “VS patients lack awareness” actually amounts.
 15 Thus, more conceptual clarity is needed.

16 Further, the diagnosis of VS is made based
 17 on third-person behavioral criteria, not anatomic
 18 or neurophysiologic criteria. At its core, the diag-
 19 nosis is essentially a clinician’s determination of
 20 whether a particular patient’s behavioral reper-
 21toire is “meaningful” or not. But this is necessarily
 22 speculative. A VS patient can grimace, blink, grunt,
 23 cry, smile, and move her limbs and eyes. The clin-
 24 ian’s responsibility is to determine whether these
 25 behaviors are purposeful or not. But when the
 26 patient is unable to communicate, if there is some
 27 purpose to any of these behaviors, or if they are in
 28 response to some internal stimuli (sadness, an
 29 itch, a pain, etc.), it will be impossible for the clin-
 30 ian to determine this. This is not to say that VS
 31 patients do in fact respond to internal stimuli, it is
 32 simply to say that there is no way to tell from
 33 behavioral criteria alone whether they do or don’t.

34 In time, anatomic pathology may assist in
 35 diagnostic assessment. At present, however, there
 36 are no pathologic criteria available to replace clin-
 37 ical assessment of “purposive” behavior. Hence,
 38 not even postmortem autopsy can confirm or
 39 refute the diagnosis. Sometimes the cortical cell
 40 bodies are destroyed as a result of anoxia second-
 41 ary to cardiac arrest. Other times there is wide-
 42 spread axonal shearing due to traumatic brain
 43 injury, with relative preservation of cortical cell
 44 bodies (Bernat 2006). Yet other times there is
 45 preservation of both the cortical cell bodies and
 46 their axonal connections, but there is damage to
 47 the thalamus, such as in the famous Karen Ann
 48 Quinlan case (Kinney et al. 1994).

49 Additionally, there are no definitive imaging
 50 or electrophysiologic modalities for making the
 51 diagnosis of VS. Instead, there is evidence sug-
 52 gesting the relative preservation of normal or
 53 close-to-normal neural activity in brain areas
 54 responsible for sensory and pain processing in the

brains of patients diagnosed as VS. This increases 55
 the uncertainty currently surrounding the diag- 56
 nosis of VS. 57

Electrophysiologic studies have shown that 58
 brain stem auditory evoked responses are typically 59
 preserved (Bernat 2006). Cortical somatosensory 60
 and auditory evoked potentials may be preserved 61
 (Jones et al. 2000, Marosi et al. 1993, Rappaport 62
 et al. 1991), showing evidence of intact primary 63
 sensory areas (Boly et al. 2004). Other studies 64
 have shown preservation of what are known as 65
 “cognitive” evoked potentials in VS patients 66
 (De Giorgio, Rabinowicz, & Gott 1993; Glass, 67
 Sazbon, & Groswasser 1998; Gott, Rabinowicz, & 68
 DeGiorgio 1991; Yingling, Hosobuchi, & 69
 Harrington 1990). 70

In a recent series of articles, Owen, Coleman, 71
 and colleagues have described the use of func- 72
 tional neuroimaging (fMRI) to detect neural 73
 activity in clinically diagnosed VS patients. For 74
 example, the neural correlates of speech process- 75
 ing are determined using healthy controls, then 76
 the activation patterns of VS patients, in response 77
 to the same stimuli, are compared to those of the 78
 healthy controls, and (some are) found to be sta- 79
 tistically indistinguishable (Coleman et al., 2007, 80
 2009; Owen & Coleman 2008a, 2008b; Owen, 81
 Coleman, Boly, Davis, et al. 2007; Owen, Coleman, 82
 Menon, Berry, et al. 2005; Owen, Coleman, Menon, 83
 Johnsrude, et al. 2005). 84

Other neuroimaging studies have documented 85
 the preservation of neurological responses in cor- 86
 tical primary sensory areas (Laureys et al. 2000, 87
 Laureys et al. 2002, Boly et al. 2004), as well as 88
 secondary somatosensory, insular, and anterior 89
 cingulate cortices (Kassubek et al. 2003) to a vari- 90
 ety of sensory and noxious stimuli in some VS 91
 patients. Owen and colleagues report on the 92
 case of a clinically-diagnosed VS patient who was 93
 asked to imagine playing tennis, then imagine 94
 wandering the rooms of her house, while research- 95
 ers scanned her brain using fMRI. They found 96
 neurological activity in the supplementary motor 97
 area and the parahippocampal place area, similar 98
 to healthy controls, after the instruction to imag- 99
 ine tennis and then wandering her house, respec- 100
 tively (Owen et al. 2006). Building on this 101
 methodology, Monti and colleagues were able to 102
 replicate this finding, and then, apparently, com- 103
 municate with a clinically-diagnosed VS patient, 104
 who was able to correctly answer a few personal 105
 history questions by willfully modulating brain 106
 activity, which could then be assessed using fMRI 107
 techniques (Monti et al. 2010). 108

1 Pain sensation is mediated by subcortical
 2 structures (Bromm & Desmedt 1995, Casey 1991).
 3 While cortical areas are also involved in pain pro-
 4 cessing, presumably there can also be intact pain
 5 sensation in the absence of cortical sensory areas
 6 (as exemplified in stroke and hemispherectomy;
 7 Brodal 1981, 89–90, 113–114; Shewmon 2004,
 8 219) and in the absence of cortical limbic areas
 9 (Bouckoms 1989; Shewmon 2004, 219). PET stud-
 10 ies have shown activation of the midbrain, thala-
 11 mus, and somatosensory cortex in response to
 12 noxious stimuli, both in the presence and absence
 13 of somatosensory cortical evoked potentials
 14 (Laureys et al. 2002). Crucially, subcortical pain
 15 pathways in VS patients are preserved; without a
 16 partially functioning brain stem the patient would
 17 be dead or brain dead, not vegetative. Thus, there
 18 is a range of evidence from different investiga-
 19 tive paradigms suggesting the preservation of various
 20 neurological functions involving pain and sen-
 21 sory processing in the clinically diagnosed VS
 22 brain.

23 Given the above considerations, it is reason-
 24 able to adopt the weak position that, at least at
 25 this point, we don't yet know enough. We don't
 26 know enough about psychological states, the
 27 many forms of consciousness, or their neurologi-
 28 cal bases; we don't know enough about the vari-
 29 ous neuroanatomic changes and neurophysiologic
 30 deficits of VS; and we don't know enough about
 31 which elements of psychological function, pain
 32 processing, or sensory processing, if any, are pre-
 33 served in any individual VS patient. Given this
 34 much uncertainty, we conclude that we do not yet
 35 have enough confidence in the medical/descrip-
 36 tive claim that VS patients lack all psychological
 37 states to ground unilateral treatment withdrawal
 38 based on considerations of justice.

39 Even if all of the above uncertainty were clar-
 40 ified, there is a further concern that is perhaps
 41 even more pressing: VS is consistently misdiag-
 42 nosed at a very high rate. Early studies found
 43 behavioral evidence of awareness in 37% to 43%
 44 of patients diagnosed as VS (Andrews et al. 1996;
 45 Childs, Mercer, & Childs 1993). More recently,
 46 Schnakers et al. (2009) found a misdiagnosis rate
 47 of 41% for patients in VS and 10% for patients in
 48 MCS (those misdiagnosed as VS were determined
 49 to be in MCS; those misdiagnosed in MCS were
 50 determined to have emerged from MCS). With a
 51 consistent misdiagnosis rate of around 40% over
 52 the past 15 years, it would be irresponsible to
 53 assume, because a patient has been diagnosed as
 54 VS, that she lacks psychological states.

55 For both of these reasons, we conclude that
 56 the claim that VS patients lack all psychological
 57 states cannot be made with a reasonable level of
 58 confidence. As a result, the normative claim that
 59 VS patients are entitled to fewer or no resources
 60 on the grounds of their lack of psychological states
 61 should have no practical import in actual deci-
 62 sion-making. It may very well be true, but the
 63 level of uncertainty surrounding the diagnosis is
 64 far too high to ground resource allocation deci-
 65 sions. Although we acknowledge that there is
 66 extreme dysfunction in VS patients, it is more
 67 appropriate to provisionally treat VS patients as
 68 being in the same moral category as MCS patients,
 69 at least until some of the uncertainties discussed
 70 above can be sorted out.

COST OF CARE

71 In any allocation scheme, we should weigh the
 72 costs against the benefits of proposed interven-
 73 tions. Any intervention that is unlikely to achieve
 74 its desired aim yet carries a great cost has low effi-
 75 cacy and therefore is unlikely to be considered
 76 justly allocated in situations of scarcity. We dis-
 77 cuss the concept of efficacy and its role in resource
 78 allocation more fully below; in this section we
 79 consider the epidemiology, care needs, and cost of
 80 caring for the profoundly neurologically impaired.
 81

82 Epidemiological information specific to VS
 83 and MCS is difficult to obtain. As Beaumont and
 84 Kenealy (2005, 184) write:

85 To establish valid epidemiological data depends
 86 critically on two principal factors: Clear, pre-
 87 cise, and universally accepted criteria for the
 88 diagnosis of a disorder, stable over time; and
 89 adequate systems for the collection of epidemi-
 90 ological data. Neither exists for vegetative
 91 state (VS) or for minimally conscious state
 92 (MCS).

93 Nonetheless, we do have some estimates available.
 94 Ashwal (2004) estimates worldwide prevalence of
 95 VS at 49 per million population (PMP), while
 96 Jennett (2002a, 2002b) estimates the prevalence of
 97 VS in the United States to be between 40 and 168
 98 PMP for adults, and between 16 and 60 PMP for
 99 children. The data on MCS are even less reliable;
 100 Beaumont and Kenealy (2005, 188) simply state
 101 that “the incidence and prevalence of MCS have
 102 yet to be established.” Giacino and colleagues
 103 (Giacino et al. 2002), while acknowledging that
 104 accurate estimates are unavailable, nonetheless
 105 hazard a prevalence estimate of between 48 and 105

1 96 PMP for MCS, for the combined adult and
 2 pediatric populations. By way of comparison, the
 3 prevalence of stroke in the United States is around
 4 20,700 PMP, and the prevalence of coronary artery
 5 disease in the U.S. is about 57,000 PMP (American
 6 Heart Association 2010). Thus, VS and MCS are
 7 relatively rare conditions, and this limits their
 8 overall cost.

9 The difficulties and ambiguities in diagnosing
 10 these conditions result in unreliable epidemiolog-
 11 ical statistics, as mentioned above. It also results in
 12 difficulties establishing cost of care estimates,
 13 since this depends on reliable diagnostic criteria
 14 and reliable epidemiology. However, although
 15 precise information specific to VS and MCS is
 16 difficult to come by, nonetheless we can consider
 17 more general cost estimates based on the kinds of
 18 care required, which we discuss below.

19 VS and MCS patients who suffer either a
 20 traumatic or nontraumatic injury receive initial
 21 care in a hospital, typically an intensive care unit
 22 (ICU). The patient may then continue rehabilita-
 23 tion or care in an acute rehabilitation center or in
 24 a skilled nursing facility such as a nursing home.
 25 Standard medical treatment includes nursing care
 26 needs such as hygiene, bowel and bladder care,
 27 skin care, and frequent repositioning. Passive range
 28 of motion and stretching exercises are needed to
 29 prevent rigidity and contractions. A gastrostomy,
 30 or feeding tube, is necessary for about 50% of VS
 31 patients (Ashwal 2004; Kaliski, Morrison, & Meyers
 32 1985), as normal swallowing may be preserved
 33 in others. Pulmonary care is useful to prevent
 34 infections although the VS/MCS patient breathes
 35 spontaneously and is thus not on a ventilator.

36 Daily costs in a hospital are more expensive
 37 than in a long-term care facility. In an ICU with-
 38 out ventilator support (in the United States), the
 39 daily cost of care is about \$6,667 for the first
 40 day, \$3,496 for the second, and the mean daily cost
 41 is about \$3,184 thereafter (the costs are much
 42 increased when ventilator support is needed; see
 43 Dasta et al. 2005). In contrast, the cost for a pri-
 44 vate room in facilities with skilled nursing and
 45 custodial care ranges from the national average in
 46 the United States of \$219 daily to a high of \$584
 47 daily in Alaska (Metlife Mature Market Institute
 48 2009). As mentioned above, most VS patients
 49 progress from coma to the VS within 2 to 4 weeks,
 50 allowing a move from intensive care to a skilled
 51 nursing facility. This results in a cost of about
 52 \$146,000 for the first year (including ICU care
 53 and nursing facility care) and an average yearly
 54 cost of about \$79,900 for skilled nursing care

thereafter. We make these estimates based on 55
 the national average cost of nursing care and the 56
 assumption of 3 weeks of ICU use without a ven- 57
 tilator; they comport fairly well with the findings of 58
 one study by Fields et al. (1993), who estimate the 59
 cost of long-term, non-acute care for VS patients 60
 at about \$90,000 per patient per year. This was a 61
 mailed questionnaire study, based on a sample of 62
 20 pediatric patients in the United States diag- 63
 nosed with VS who had been discharged home, 64
 and whose primary costs included 10 to 12 hours 65
 of nursing care per day. 66

Taking the low and high prevalence estimates 67
 from above, based on a population estimate of 68
 304.5 million (U.S. Census Bureau 2008), and using 69
 \$90,000 per patient per year as a cost estimate, we 70
 get a total cost for the combined VS and MCS 71
 population (both adult and pediatric) of between 72
 \$2.9 billion and \$8.9 billion per year in the United 73
 States. This is a huge expenditure, but by way of 74
 comparison, the estimated cost of cardiovascular 75
 disease in the United States in 2010 will be \$324.1 76
 billion in direct costs (hospitals, medical profes- 77
 sionals, medications, etc.) and \$503.2 billion when 78
 the indirect cost of lost productivity is added to 79
 that estimate (American Heart Association 2010). 80
 As a word of caution when considering these cost 81
 estimates, however, we note once again that they 82
 should be considered only partially reliable at 83
 best, and are used only to get a very general idea 84
 of the amount of cost involved. 85

JUSTICE AND THE MORAL COMMUNITY

86
 87
 Justice involves treating like cases alike or treating 88
 similarly situated people similarly. While this 89
 formal concept of justice derived from Aristotle is 90
 clearly the backbone of all concepts of justice, it 91
 is *merely* formal, in the sense that it provides a 92
 form or structure, but lacks meaningful content. 93
 Everything in the universe is like everything else 94
 in the universe, in some respects. To understand 95
 what justice requires in any particular situation, 96
 we must understand the criteria for *relevant simi-* 97
larity for that particular situation. 98

Different distribution schemes—libertarian, 99
 utilitarian, egalitarian, prioritarian, need, urgency, 100
 efficacy, and so forth—are at bottom criteria for 101
 determining relevant similarity. If two people are 102
 similar in need, urgency, and efficacy, for example, 103
 then according to Rhodes' account of *clinical jus-* 104
tice (Rhodes 2005; 2007, 1186), they are relevantly 105
 similar and hence should be treated similarly. By 106
 contrast, if two people require different amounts 107

1 of resources in order to preserve or restore normal
2 or species-typical functioning so that their oppor-
3 tunities can be equalized, then according to
4 Daniels' egalitarian, equality of opportunity account
5 (Daniels 1985, Chapter 1), those two should
6 be treated differently, because they are relevantly
7 dissimilar.

8 To understand fair resource allocation in prac-
9 tical terms, we should answer two questions. First:
10 Who gets consideration at all? That is, we start
11 with a pool of *potential* claimants, without yet pri-
12 oritizing their claims on health care resources.
13 Second: Given that pool, how do we split it into
14 categories and then prioritize the categories (cf.
15 Beauchamp & Childress 2009, 275–279)? In this
16 way, each member of each category is relevantly
17 similar to every other member of that category,
18 and justice is served when all members of that cat-
19 egory are treated alike; however, the categories
20 themselves get ranked in order of priority. This
21 takes into account that resource distribution is
22 relative to supply and demand, and ranks the
23 strength of each group's claim on resources against
24 one another.

25 One underlying motivation for determining
26 principles of just distribution is the recognition
27 that people have value and their interests matter.
28 The way basic benefits and responsibilities of
29 social cooperation are distributed, including espe-
30 cially resources tied to health care, has a direct
31 effect on people's life plans and expectations, their
32 ability to pursue their goals, and hence, the satis-
33 faction of their interests. We suggest then that a
34 reasonable starting point is to briefly examine the
35 more fundamental issue of the determinants of
36 human moral worth, or value. Namely: What is it
37 that makes an individual valuable? Examining
38 this question will help in determining the pool of
39 potential claimants on health care resources. We
40 assume that having moral worth is sufficient to
41 place one within this larger pool. We will hence-
42 forth use the term "moral community" to refer to
43 the group of individuals that have moral value,
44 and in virtue of which they are potential claimants
45 on health care resources.

46 Given a moral community, a *distribution prin-*
47 *ciple* splits that community into categories and
48 ranks the strength of their claims on health care
49 resources. We can also consider distribution prin-
50 ciples as relevance criteria, because they specify
51 the relevant respects that determine likeness for
52 purposes of fair resource allocation. A complete
53 theory of distributive justice therefore requires
54 both a theory to determine the moral community,

as well as a distribution principle, relevance crite- 55
rion, or ranking scheme, which ranks the strength 56
of each sub-category's claim against every other. 57
Notice that being a member of the moral commu- 58
nity gives one standing as a potential claimant but 59
does not guarantee the right to resources, as the 60
distribution principle might rank one's claims as 61
having less priority than most others. 62

POPULATING THE 63 MORAL COMMUNITY: 64 THREE CONCEPTS OF 65 MORAL WORTH 66

The Kantian view is that rational *agents* have 67
intrinsic moral value; everything else that has 68
value only does so relative to the value attributed 69
it by a rational agent. To be an agent is to be able 70
to have and give reasons, and to autonomously 71
guide and direct one's behavior in light of one's 72
goals and reasons. As a result, rational agents are 73
moral agents, in the sense that they can be held 74
morally responsible. This Kantian view of person- 75
hood and moral value is deeply ingrained in our 76
common law traditions, via notions such as respect 77
for privacy, personal liberty, and the right of self- 78
determination, as well as culpability, negligence, 79
and malpractice. It is also deeply ingrained in 80
health care ethics, as the well-regarded principle 81
of respect for autonomy. On this view, humans are 82
morally valuable because they have the ability to 83
guide and direct their behavior based on reasons. 84

A different view, grounded in the utilitarian 85
tradition, does not look to agency to confer value, 86
but simply the ability to experience pain.⁶ Someone 87
who has the ability to have and give reasons is 88
responsible for her actions, and is thus a *moral* 89
agent and a member of the moral community. 90
A *moral patient* is a member of the moral com- 91
munity, deserving of consideration by moral 92
agents.⁷ On this view, living things that have the 93
ability to *feel* have moral standing and deserve 94
consideration. 95

To compare the Kantian to the utilitarian view, 96
it is important to recognize that, while the Kantian 97
holds the ability to be self-legislating above else as 98
conferring intrinsic moral value, Kant would not 99
claim that non-agents deserve no moral consider- 100
ation. Rather, for Kant, there is a general duty of 101
beneficence, whereby agents have the obligation 102
of treating non-agent moral patients beneficently. 103
The Kantian would not claim that, for example, a 104
severely demented person should not be treated 105
humanely. There is, however, a very crucial dis- 106
tinction between the Kantian and utilitarian views 107

1 that should not be elided: Simply having the ability to feel pain at all confers moral standing according to the utilitarian view, but not according to the Kantian. Therefore animals, humans with profound mental disability, infants, etc., all have moral standing on the former view. By distinction, the Kantian view of moral value would not assign individuals in the aforementioned categories inherent moral value.

10 A different way of thinking about human moral value derives from a sort of essentialist, exceptionalist view of humanity, which we will call the *biological essentialism* view. On this view, humans have moral value simply *qua* biologically functioning human being. Thus, having the human genome and being biologically alive (or even simply maintaining certain biological functions involving the maintenance of internal homeostasis and resisting entropy) confer moral value. This view is not explicitly tied to any particular tradition in moral theory; however, the idea that humans are special, indeed morally special, has been around for as long as humans have, is expressed in the teachings of various religious traditions, and is sometimes expressed in terms of the sanctity of human life, or human dignity. Hence, simply having the human genome and having some (unspecified) level of biological functioning confers moral value on the biological essentialism view.

30 We do not propose here to adjudicate a long-standing dispute between Kantians and utilitarians on such a fundamental issue as the core determinant of moral worth. We also do not propose to challenge or defend the longstanding view that assigns moral worth to a biologically functioning human, and finds expression in some of the world's major religions and, perhaps, mainstream intuition. Instead, we shall take note of the following. The allocation of public resources is a public policy issue. The overarching goal of such policy is to create a system that all can acknowledge as rational, relevant, and fair, even though we do not all share the same basic worldview or value system.⁸ There is no consensus on what fundamentally determines human moral worth. However, the three conceptions canvassed above are commonsense, based in venerable philosophical and religious tradition, and widely regarded as relevant and reasonable, even though there is no consensus that any one of them is superior to the others. Therefore we argue that each element—self-determination, capacity for pain, and biological function—is enough to determine “as if” moral worth. In other words, in the context of

policy that structures a heterogeneous society, it doesn't matter whether any of these determine *actual* moral worth. Rather, it is enough to claim that it is sensible to treat an individual that satisfies any of these characteristics *as if* she were a member of the moral community, on the grounds that reasonable people do in fact do so, and for reasons that all can acknowledge as relevant.

We recommend that a quasi-pluralistic approach of tolerance is the optimal one. However, while we acknowledge the reasonableness of some level of difference in our fundamental value judgments, we neither advocate nor accept an “anything-goes,” subjectivist, nor relativist approach. We do not, for example, advocate ranking life as an overriding value so that it trumps the patient's wishes or the surrogate's ability to discontinue life-sustaining care. This makes our theory of the moral community “quasi” pluralist.

Patients with the most severe neurological impairments—even brain death—are members of the moral community, on the quasi-pluralist conception recommended here. The MCS patient has some limited capacity for awareness of her internal and external milieu. She is able to respond with meaningful gestures and thereby to communicate her desires. It is not obvious whether we should assume that the MCS patient has the capacity for self-determination in a robust sense, thereby meeting the Kantian's standard for moral standing, but she clearly has the capacity for pain and other psychological states, thereby meeting both the utilitarian's and the biological essentialist's standards.

The VS patient is biologically alive and continues to perform a range of biological functions, albeit in the presence of profound neurological disorder. By this circumstance alone she qualifies to be treated as if she were a member of the moral community. Furthermore, we currently lack reasonable confidence in the claim that any individual VS patient is without psychological states, for the several reasons discussed above. Therefore the VS patient may very well have some rudimentary psychological functions preserved, including especially the reception and transduction of sensory and noxious stimuli. If so, this would satisfy the utilitarian's standard for moral worth as well, though not the Kantian's.

The brain-dead patient is also a member of the moral community. Although legally dead, the brain-dead individual continues to perform various biological functions that serve to resist entropy and maintain homeostasis. These include cellular

1 respiration, circulation, gas exchange at the alve-
 2 oli, and many others. As a result, the brain-dead
 3 individual is a minimally biologically functioning
 4 human, and therefore qualifies to be treated *as if*
 5 she were a member of the moral community, on
 6 the grounds that we have mentioned above:
 7 Reasonable people do in fact value these individuals
 8 as having intrinsic moral worth, and for reasons
 9 that all can acknowledge as relevant even though
 10 not all will accept these reasons as sufficient.

11 We urge a tolerant, quasi-pluralistic concep-
 12 tion of the moral community that makes room for
 13 differing fundamental judgments on the determi-
 14 nants of moral worth. A consequence of this view
 15 is that even the most severely neurologically
 16 impaired individuals (indeed, even the brain dead,
 17 who are legally dead) deserve to be treated as
 18 if they are loci of intrinsic moral worth, and
 19 are therefore *potential* claimants on health care
 20 resources. However, recall that distributive justice
 21 requires, in addition to a conception of the moral
 22 community, a distribution principle or ranking
 23 scheme. This distribution principle will split the
 24 pool of potential claimants into smaller categories,
 25 and prioritize them according to some ranking
 26 scheme. It is consistent with what we have argued
 27 here that different principles should be applied in
 28 different scenarios (say, in the context of scarce
 29 organs for transplant as opposed to relatively
 30 abundant resources like some antibiotics).

31 THE ROLE OF EFFICACY 32 IN RESOURCE 33 DISTRIBUTION

34 There are many different criteria that might be
 35 used as distribution principles that categorize
 36 and rank the members of the moral community
 37 for purposes of health care resource distribution.
 38 These criteria are usually based in large-scale the-
 39 ories of social justice, such as egalitarianism, pri-
 40 oritarianism, utilitarianism, libertarianism, and
 41 so forth. As above, we will not attempt to arbitrate
 42 such large-scale and fundamental theories in a single
 43 chapter. Instead, we urge that a focus on consen-
 44 sus and compromise is appropriate in making
 45 policy decisions.

46 While there are many entrenched and some-
 47 times opposing views on what constitutes a fair
 48 distribution of resources, in situations of scarcity
 49 in medicine, the importance of the principle of
 50 efficacy is well accepted. When resources are
 51 scarce, the assumption behind appealing to effi-
 52 cacy is that, if some particular resource is not
 53 likely to help the person to whom it might be

given, then it should not be given to that person 54
 when it might help another. For example, it seems 55
 unjustified to transplant a heart into a patient who 56
 already has multiple organ failure and is unlikely 57
 to survive even with the heart transplant, because 58
 by doing so, some other patient with a much 59
 higher chance of survival gets denied, and the end 60
 result is that both patients die when one could 61
 have been saved. However, while the appeal to 62
 efficacy during scarcity enjoys widespread accep- 63
 tance, the principle itself needs explication. 64

65 Efficacy is the likelihood that a particular 65
 intervention will have its desired effect. However, 66
 an important and open question is: What *should* 67
 be the desired effect? While assessing the likeli- 68
 hood of a desired medical outcome given some 69
 intervention is a non-normative matter for sci- 70
 ence to grapple with, deciding on what the benefit 71
 should be is a normative matter. Embedded within 72
 the principle of efficacy in resource distribution is 73
 a value judgment about what benefits are the most 74
 important. For example, consider the classic battle- 75
 field triage case. Many soldiers are badly wounded, 76
 and supplies, including the medic's time and avail- 77
 ability, are limited. In this case of extreme scarcity, 78
 those who are highly likely to die even if treated are 79
 prioritized against, so that the medic is able to treat 80
 those who have a reasonable likelihood of survival. 81
 The embedded value judgment is that life is the 82
 most important good, and if treatment will not 83
 have the desired effect of preserving life for some 84
 individual soldier, then treatment should not be 85
 allocated to her. However, while the preservation 86
 of life is an obvious good, there are others that 87
 should also be considered. Freedom of movement, 88
 the preservation of functional limbs, the preserva- 89
 tion of cognitive capacities, and relief of pain are 90
 some other moral goods that might be appealed to 91
 as components of the principle of efficacy. 92

93 Indeed, there is an important connection 93
 between the concepts of moral worth discussed 94
 above, efficacy, and the profound neurological 95
 impairments under consideration here. Specifi- 96
 cally, whether some intervention made on behalf 97
 of a patient with VS is efficacious depends on one's 98
 underlying views about what the goals of treat- 99
 ment are or should be. For example, imagine a VS 100
 patient such as Terri Schiavo with severe pneu- 101
 monia and in need of a ventilator and antibiotics, 102
 as compared to a non-VS patient in similar cir- 103
 cumstances. A Kantian would argue that the treat- 104
 ments are more efficacious for the non-VS patient 105
 than for the VS patient: The interventions are 106
 likely to restore or preserve the non-VS patient's 107

1 capacity for self-determination, but will not do so
 2 for Schiavo. On the other hand, the biological
 3 essentialist might argue that so long as the inter-
 4 ventions have an equal likelihood of preserving
 5 biological life and returning each patient to her
 6 former state, then the treatment is equally effica-
 7 cious in both cases. Similar disagreements will
 8 arise in the context of MCS and brain death, and
 9 between utilitarians and others.

10 Again we appeal to consensus. Just about every-
 11 one agrees that preserving life, preserving auton-
 12 omy, and minimizing pain are each important
 13 goals of medicine. Therefore it is appropriate to
 14 appeal to any of them as components of the prin-
 15 ciple of efficacy. The disagreement is not about
 16 whether any of these things are important goals of
 17 medicine; rather, the disagreement is about which
 18 of them is minimally sufficient for moral stand-
 19 ing, as discussed above. The Kantian takes only
 20 the capacity for self-government to be minimally
 21 sufficient, the utilitarian takes the capacity for
 22 pain to be minimally sufficient, and the biological
 23 essentialist takes biological functioning to be mini-
 24 mally sufficient. But everyone agrees that, if it is
 25 possible to preserve life while minimizing pain
 26 and preserving or restoring autonomy—in other
 27 words, if it is possible to achieve all three—then
 28 that is clearly the optimal outcome.

29 For practical allocation decisions, the Kantian
 30 would be wrong were she to claim that only pre-
 31 serving autonomy makes for an efficacious medi-
 32 cal treatment, but the biological essentialist would
 33 similarly be wrong were she to claim that preserv-
 34 ing life and autonomy is equally efficacious as pre-
 35 serving life in the absence of autonomy. Instead,
 36 the best answer for real-world policy is some-
 37 where in the middle of these two extremes. It is
 38 efficacious to treat a VS patient, because doing so
 39 can achieve one of the several obvious goals of
 40 medicine, which is to preserve life. It is also effica-
 41 cious to treat a non-VS patient in similar circum-
 42 stances, because doing so can achieve the goals of
 43 preserving life and preserving autonomy. However,
 44 if it becomes necessary to compare the efficacy of
 45 a given treatment when provided to two patients,
 46 one for whom self-determination can be pre-
 47 served and another for whom it cannot, then it
 48 would be more efficacious to treat the former. This
 49 is justified on the simple ground that more of the
 50 widely accepted goals of medicine can be achieved
 51 for the former than for the latter.

52 We now apply these considerations to discuss
 53 resource allocation and reasonable accommoda-
 54 tion in brain death, VS, and MCS.

BRAIN DEATH AND REASONABLE ACCOMMODATION

The concept of *death* is both vague and ambigu-
 ous, and the word “death” has evolved to take on
 several meanings. Rhodes (2001, 1), for example,
 notes the following:

55
56
57

AU: Please
confirm page
range here.

62
63
64
65
66
67

While it may not always have been so, today the
 word ‘death’ has three distinct senses. ‘Death’ is
 a rough marker for a complex biological event.
 ‘Death’ is also an important marker in the social/
 legal/political realm. And ‘death’ indicates dis-
 tinctions in the moral realm.

68
69
70
71
72
73
74
75

The biological notion of death involves the cessa-
 tion of the functioning of the organism as a whole;
 or, it involves the loss of the integrative unity
 of the organism. In this context, “functioning” is
 typically taken to mean the resistance of entropy
 and the maintenance of internal homeostasis
 (Bernat, Culver, & Gert 1981; Korein & Machado
 2004).

76
77
78
79
80
81
82
83
84
85

The legal definition of “death” is stipulative,
 and thus true by definition. It reflects sociopoliti-
 cal, legal, and moral reasons for saying that an
 individual is *legally dead*, so that the legal and
 social status accorded to living humans ceases.
 Currently, there is international consensus in sup-
 port of either the whole-brain or brain stem for-
 mulation, which states that an individual is legally
 dead when all functions of her brain (or brain
 stem) have ceased irreversibly.

86
87
88
89
90
91
92
93
94
95
96

In every state of the United States except New
 Jersey and New York, discretion for determining
 death by either brain death or cardiorespiratory
 arrest resides with the physician. Family members
 do not have legal authority to prevent or forestall
 the determination of death by the brain death
 protocol. Physicians may of course be sensitive to
 the concerns, worries, and plight of family mem-
 bers and may choose an option that best fits the
 family’s situation. Still, the physician remains the
 final arbiter.

97
98
99
100
101
102
103
104
105
106

By contrast, in New York and New Jersey, the
 family’s or patient’s prior moral beliefs regarding
 death and brain death play a more prominent role
 in the determination and certification of death,
 and hence in resource usage. In New York, after
 the determination of brain death but prior to cer-
 tifying death, if it is known that the patient had
 moral objections to the brain death standard, the
 hospital must provide reasonable accommodation
 (New York State Department of Health 2005).

1 In such circumstances, New York permits the
2 expenditure of resources on brain-dead patients.
3 The guideline does not permit absolute accom-
4 modation, however, as a hospital is not required
5 to continue ventilation indefinitely. In effect, the
6 policy establishes a legal side-constraint on allo-
7 cation decisions by the hospital or medical team
8 without insisting on an inviolable requirement.

9 The New Jersey Declaration of Death Act (*New*
10 *Jersey Declaration of Death Act* 1991) similarly
11 allows family members the discretion for deter-
12 mining death according to cardiorespiratory cri-
13 teria, based on the moral or religious beliefs of the
14 patient. New Jersey's legislation favors respecting
15 beliefs about death so that the patient's family can
16 insist that the hospital continue expending medi-
17 cal resources even when the patient would be
18 determined legally dead according to the brain
19 death protocol.

20 Some seek to expand the New Jersey exemp-
21 tion as a general right (Veatch 1999) and to treat
22 the *New Jersey Declaration of Death Act* as signal-
23 ing a new direction for developing public policy
24 (Olick 1991). From the recognition that individu-
25 als have alternative conceptions of death, the posi-
26 tion presumes that whether a person is dead is a
27 moral rather than a scientific matter. As such, it
28 should be left to the patient's beliefs which of the
29 two alternatives should be used by the medical
30 profession in determining and certifying death.

31 Our quasi-pluralist conception of the moral
32 community explains and justifies the New York
33 and New Jersey brain death policies. We accept
34 the reasonableness of some religious views that
35 accord moral value to a brain-dead but biologi-
36 cally functioning individual because, implicitly at
37 least, we accept that the biological essentialism
38 view is at least one of a range of reasonable, funda-
39 mental views about human moral value; or, it is at
40 least *not unreasonable* to make this fundamental
41 value judgment. Furthermore, reasonable accom-
42 modation is not a radical departure from common
43 practice. Treatment and care continue to be
44 evidence-based, and patient or proxy requests for
45 uncommon treatment (e.g., deep-brain stimula-
46 tion for prolonged VS patients) or non-standard
47 treatment (e.g., homeopathy) can be refused.
48 Reasonable accommodation forestalls decisions
49 by the hospital or medical team to discontinue or
50 reduce treatment, but need not supplant those
51 decisions.

52 Additionally, we acknowledge the importance
53 of the voices of the medical profession in deter-
54 mining the appropriateness of certain medical

interventions, such as maintaining a brain-dead 55
individual through intensive life support. Although 56
there are many individual physicians who oppose 57
brain death as a criterion for death, nonetheless 58
no professional medical organization rejects it. 59
By forestalling but not preventing physicians from 60
declaring a patient dead by neurological criteria, 61
which is an accepted and standard practice, 62
New York's reasonable accommodation policy 63
preserves the integrity of the profession while also 64
acknowledging the reasonableness of different 65
value judgments. 66

While we allow a quasi-pluralist conception 67
of value, we neither advocate nor accept an 68
"anything-goes" approach either. We do not and 69
should not, for example, make accommodations 70
for a religious view that doesn't accept cardiac 71
death as death. If *all* biological functions have 72
ceased, we do not make exceptions if someone 73
were to claim that her religion demands that the 74
body be kept on a ventilator or even in a hospital 75
bed. Furthermore, we acknowledge that the *legal* 76
definition of "death" is a stipulative one that 77
reflects sociopolitical, legal, and moral reasons for 78
saying that an individual is legally dead. As such, 79
there is a value judgment embedded within it, and 80
therefore it is appropriate to allow for reasonable 81
accommodation of other, different value judgments. 82

We therefore argue that it is an appropriate 83
institutional, state, or federal policy to allow indi- 84
viduals to be accorded reasonable accommoda- 85
tion from the brain death standard for death if 86
they or their surrogates object on moral grounds 87
(i.e., if they attach moral value to a biologically 88
functioning human). However, in the face of scar- 89
city, efficacy plays an important role here as it 90
does elsewhere. When an individual doctor or 91
hospital administrator is faced with the choice of 92
either removing a brain-dead individual from a 93
ventilator or ICU bed, or denying that resource 94
to someone else who isn't brain dead, the choice 95
should always go in favor of the non-brain-dead 96
patient. This is justified on the grounds of efficacy: 97
The brain-dead patient might be maintained in a 98
state of minimal biological function for some brief 99
period of time, but she cannot be restored to ratio- 100
nal agency, nor even to a state in which any psy- 101
chological states occur at all. Since the level of 102
biological functioning is so minimal and cannot 103
be restored to anything near normal functioning, 104
scarce resources would be allocated unfairly if 105
another patient is denied resources in favor of the 106
brain-dead patient, on the grounds of the low effi- 107
cacy of maintaining the brain-dead patient. 108

1 The “reasonable” in “reasonable accommodation” should be understood in terms of resource
 2 availability, and the local hospital administrator
 3 should have the final word on when the ICU bed,
 4 ventilator, or expert nursing staff are urgently
 5 needed elsewhere. If these resources can be used
 6 to maintain a brain-dead individual who invokes
 7 the reasonable accommodation clause without
 8 putting someone else at risk of death or permanent
 9 disability, then they should be used for that
 10 purpose, and this can be a just allocation of resources.
 11 If, however, someone else urgently needs them,
 12 then the brain-dead individual should be denied
 13 those resources, even if it means removal of the
 14 ventilator over objection. This is also just because
 15 resource allocation is relative to supply and
 16 demand.

18 RESOURCE ALLOCATION 19 FOR VS AND MCS 20 PATIENTS

21 Brain death is distinct from VS and MCS, medically, legally, and morally. Medically, the brain-dead
 22 patient cannot perform the “vegetative” functions
 23 still performed by the VS patient, such as regulation
 24 of hormones and blood pressure, control of
 25 respiration, or cranial nerve reflexes. The brain-dead
 26 patient is on a ventilator, whereas most VS
 27 patients are not. Legally, the brain-dead patient is
 28 dead whereas the VS or MCS patient is alive.

29 Morally, there are a range of differences.
 30 Because there is so much uncertainty surrounding
 31 the diagnosis of VS, both in terms of our
 32 understanding of the illness and sensory or psychological
 33 functions that may or may not be preserved, as well as the high rate of misdiagnosis of
 34 VS, it is inappropriate to treat any individual VS
 35 patient as being in a different moral category than
 36 the MCS population. That is, we lack a reasonable
 37 level of confidence in the claim that any individual
 38 VS patient lacks all psychological states. Therefore
 39 we ought to take the safer route and treat VS
 40 patients as MCS patients for moral purposes.
 41 MCS patients are severely disabled but nonetheless
 42 experience some psychological states. They
 43 respond to stimuli in apparently purposeful ways
 44 and they communicate, albeit inconsistently.
 45 Therefore we should presume that they experience
 46 pain and discomfort at least, and possibly
 47 have desires that may be fulfilled or frustrated.
 48 This puts the MCS/VS population into a different
 49 moral category than the brain dead, since the
 50 brain dead do not experience pain and do not
 51 have any desires to be satisfied or frustrated.

52 Therefore the brain dead have no interests, 54
 53 whereas the MCS/VS patient has, minimally, an 55
 54 interest in not feeling bodily pain and possibly 56
 55 also interests in having her desires fulfilled. 57

56 Since there is this important moral distinction 58
 57 between the brain dead and the nearly brain dead 59
 58 such as the MCS and VS, resources ought to be 60
 59 allocated in a way that reflects that difference. 61
 60 Namely, it should be very easy to prioritize against 62
 61 the brain dead on grounds of the low efficacy of 63
 62 any medical treatment, but less easy to do so 64
 63 against the VS/MCS patient. The VS/MCS patient 65
 64 is legally and biologically alive and possibly a sub- 66
 65 ject of some sensory experiences and other psy- 67
 66 chological states. Therefore treating such a patient 68
 67 can achieve the goals of providing comfort care 69
 68 and maintaining life, although not preserving 70
 69 autonomy. In situations of extreme scarcity, how- 71
 70 ever, it would be unfair to prioritize against a 72
 71 non-VS/MCS patient so as to treat the VS/MCS 73
 72 patient, based on the same considerations of effi- 74
 73 cacy. To clarify our claims, we will discuss these 75
 74 issues in the context of two cases that follow. 76

75 First, recall Teresa Schiavo. This is a young 77
 76 woman in a prolonged, 17-year VS whose family 78
 77 disagreed about the best course of care for her, 79
 78 and their difficult family struggle made its way 80
 79 into the arena of public debate through multiple 81
 80 court cases, gubernatorial and legislative inter- 82
 81 vention, and widespread media coverage (Caplan, 83
 82 McCartney, & Sisti 2006). The moral and legal 84
 83 questions most often discussed with respect to the 85
 84 Schiavo case involve the sanctity of human life 86
 85 and the right to die, the right to self-determina- 87
 86 tion or non-interference, and more generally, 88
 87 respect for the decisions of legal surrogates. 89

88 In addition to the above considerations, dis- 90
 89 tributive justice is always relevant. To begin, con- 91
 90 sider that Ms. Schiavo was in need of supportive 92
 91 care for all of her basic needs. As mentioned 93
 92 above, this includes important nursing care needs 94
 93 such as hygiene, bowel and bladder care, skin 95
 94 care, frequent repositioning, and passive range of 96
 95 motion and stretching exercises. While a feeding 97
 96 tube is necessary for about 50% of VS patients, 98
 97 this was not necessary in Ms. Schiavo's case, nor 99
 98 was she on a ventilator. These basic care needs can 100
 99 be expensive, as discussed above. Given the severe 101
 100 disability and high cost, does social justice demand 102
 101 that patients like Ms. Schiavo be denied care? 103

102 We argue that it does not. Ms. Schiavo and 104
 103 other VS patients ought to be provided the stan- 105
 104 dard medical and nursing care mentioned above, 106
 105 with public funds if necessary. As we've argued 107

1 above, these patients are members of the moral
 2 community, or, minimally, they should be treated
 3 as if they are members of the moral community.
 4 Therefore they are potential claimants on health
 5 care resources because they have moral standing.
 6 Although there is always some amount of scarcity,
 7 the resources required for basic needs mentioned
 8 above are not so scarce that, by giving care to Ms.
 9 Schiavo and others like her, someone else would
 10 have to be denied the very same intervention and
 11 thereby be put at risk of death or disability.

12 However, circumstances could arise in which
 13 this would change. Imagine for example that Ms.
 14 Schiavo contracted severe pneumonia and was in
 15 need of an ICU bed and ventilator. Imagine fur-
 16 ther that the ICU has only one available bed, and
 17 at the same time, Ms. Smith, a different patient of
 18 the same age, say with a history of asthma but no
 19 other major ailments, also contracted pneumonia
 20 and needed that ICU bed. (Imagine further that
 21 there are no nearby hospitals with ICU space
 22 available either.) Some individual physician or
 23 hospital administrator must make the difficult
 24 decision to give the last ICU bed to either Ms.
 25 Schiavo or Ms. Smith, with the consequence that
 26 whoever does not get the ICU bed will be sent to
 27 a standard unit, and be far more likely to succumb
 28 to her pneumonia.

29 This circumstance involves a triage context,
 30 where efficacy becomes relevant. By all accounts,
 31 after 17 years in a VS, Schiavo's mental function
 32 cannot be restored; her status as a moral agent is
 33 forever lost. The best that can be done for her is to
 34 preserve biological functioning, and, possibly,
 35 maintain a state of relative comfort.⁹ By contrast,
 36 Smith is a moral agent and if the pneumonia is
 37 treated aggressively, she can be restored to a state
 38 of autonomous agency and preservation of spe-
 39 cies-typical biological functioning, and her pain
 40 from the pneumonia can be alleviated.

41 Both Smith and Schiavo are loci of intrinsic
 42 moral worth, both are members of the moral
 43 community, and providing health care to each is a
 44 matter of justice and desert, not beneficence or
 45 charity. However, the reality of limited resources,
 46 especially in a micro-allocation context, forces a
 47 decision with distressing consequences. Justice
 48 demands that like cases be treated alike, but Smith
 49 and Schiavo are not alike, at least for this alloca-
 50 tion decision.

51 Similarly, if Ms. Schiavo had developed organ
 52 failure and was in need of a transplant, she should
 53 not have been placed on a transplant waiting list,
 54 nor should she have received scarce vaccines, as in

the recent H1N1 flu virus outbreak. Although 55
 she should be treated as a member of the moral 56
 community and therefore a potential claimant 57
 on resources, in these types of circumstances, 58
 resources are so scarce that providing a unit of 59
 that resource to one individual means that another 60
 individual must be denied that very same resource. 61
 Obviously in a very broad sense, giving anyone 62
 any care means someone else is missing some- 63
 thing, but in a more tangible and direct way, giving 64
 the organ to Ms. Schiavo means that that particu- 65
 lar organ doesn't go to the next person on the list, 66
 and so on, until the very next person on the list 67
 that does not get an organ, dies. Although it would 68
 be efficacious to provide a transplanted organ to 69
 Ms. Schiavo because it could help to achieve the 70
 legitimate medical goal of preserving biological 71
 life, it would be *more* efficacious to transplant that 72
 same organ to a different patient who is not in 73
 a VS because it could preserve both life and 74
 autonomy. 75

Let us consider a more recent case. Ruben 76
 Betancourt was a 73-year-old man who, after pro- 77
 longed oxygen deprivation as a result of complica- 78
 tions surrounding surgery, developed anoxic 79
 encephalopathy in January 2008. He lapsed into 80
 unconsciousness, was placed on a ventilator, and 81
 was diagnosed as being in a VS. Six months after 82
 the initial anoxic insult, Mr. Betancourt was diag- 83
 nosed with renal failure and given thrice-weekly 84
 dialysis treatments. Six months after that, the 85
 treating hospital, Trinitas Regional Medical 86
 Hospital in Elizabeth, NJ, advised Mr. Betancourt's 87
 family that they felt that further treatment was 88
 medically inappropriate and sought to discon- 89
 tinue dialysis and remove him from the ventilator, 90
 which would result in his death. The family sought 91
 and received a restraining order in April 2009 92
 from the Superior Court of New Jersey, prohibiting 93
 the hospital from discontinuing treatment without 94
 the consent of the daughter, Mr. Betancourt's legal 95
 surrogate. The hospital appealed, but before fur- 96
 ther arguments could be heard Mr. Betancourt 97
 died, in May 2009. 98

Trinitas physicians argued that Mr. Betancourt 99
 was in a persistent, irreversible VS and would not 100
 recover. They further argued that dialysis treat- 101
 ment should be discontinued as further care would 102
 achieve no medical goal. As a result, they sought to 103
 discontinue all treatment, including dialysis, arti- 104
 ficial nutrition and hydration, and ventilation, 105
 over the family's objection. Family members 106
 argued that the Trinitas medical personnel were 107
 incorrect in their assessment, disputing the claim 108

1 that Mr. Betancourt was in an unresponsive,
 2 persistent VS. They argued that he would open
 3 his eyes or turn his head in response to certain
 4 voices, and would recoil when medical personnel
 5 approached, anticipating treatment. They, along
 6 with Mr. Betancourt's nephrologist, also disputed
 7 the claim that dialysis treatment was futile or
 8 harmful, arguing that it is the standard of care for
 9 end-stage renal failure (*Betancourt v. Trinitas*
 10 *Regional Medical Hospital* 2009).

11 Futility, however, is the inverse of efficacy;
 12 thus it is relative to some particular outcome to be
 13 achieved. For the goal of discharge or return to
 14 Mr. Betancourt's former state of functioning, dial-
 15 ysis and other treatments *are* futile; that is, their
 16 likelihood of achieving this outcome is vanish-
 17 ingly slim. But on the other hand, dialysis treat-
 18 ments served to prevent electrolyte imbalances
 19 that would have resulted in cardiac arrest; they
 20 thereby furthered the goal of preserving Mr.
 21 Betancourt's life, for 6 extra months, and so were
 22 not futile for achieving this other goal. Thus,
 23 whether treatment is futile depends on what is
 24 considered an appropriate goal of medical treat-
 25 ment. As above, we suggest that a quasi-pluralist
 26 position of tolerance is appropriate here. Both the
 27 family and the treating nephrologist felt that the
 28 goal of extending biological life was an important
 29 goal, and dialysis did help to achieve that.¹⁰
 30 However, we may still ask whether this use of
 31 resources was just.

32 Dialysis treatment is expensive; one study
 33 found the average annual cost of in-hospital dialy-
 34 sis treatments for end-stage renal disease to be
 35 \$51,252 (Lee et al. 2002). Further, the average cost
 36 of a single day in an ICU with ventilator support is
 37 over \$10,000 for the first day, near \$4,700 for the
 38 second day, and around \$4,000 per day thereafter
 39 (Dasta et al. 2005). With this great cost, it is not
 40 surprising that Mr. Betancourt's unpaid hospital
 41 bill reached \$1.6 million before Trinitas sought to
 42 discontinue his treatment over the family's objec-
 43 tion (Toutant 2010). Is it fair to use this amount of
 44 resources on a ventilated patient with end-stage
 45 renal failure in an irreversible VS, when there are
 46 so many others in need of care, and who could
 47 benefit so much more?

48 We suggest that it is. Dialysis is certainly
 49 expensive, but it is not so scarce a resource that
 50 using a dialysis machine to treat Betancourt
 51 means that someone else will not get dialysis and
 52 hence die. Dialysis is an efficacious (and hence
 53 medically appropriate) treatment because it can
 54 help to keep Mr. Betancourt alive by preventing

55 fatal electrolyte imbalances. Given that the family
 56 believed Mr. Betancourt would have wanted to
 57 stay alive in this state, providing treatment further
 58 achieves the goal of respecting the wishes of
 59 autonomous agents through respecting their sur-
 60rogates' decisions. As we argued above, there is no
 61 consensus on what fundamentally determines moral
 62 standing, but the three aspects of self-determination,
 63 minimization of pain, and preservation of bio-
 64 logical life are all widely accepted as relevant con-
 65 siderations in this regard. Since it is reasonable to
 66 value biological life, even though not everyone
 67 values it in the same way, it is a sensible and fair
 68 allocation to use resources in order to preserve
 69 life, even in the absence of preserving autonomy.

70 As with Ms. Schiavo, there should also be
 71 limits. While we argue that it is just to use public
 72 funds to provide ventilation, dialysis, and artifi-
 73 cial nutrition and hydration to Mr. Betancourt, it
 74 would not be just to put him on a kidney trans-
 75 plant list. In this circumstance, the scarcity of
 76 resources is not a scarcity of *funds*, but a scarcity
 77 of *kidneys*. As we argued with Ms. Schiavo, while
 78 it would be efficacious to transplant a kidney into
 79 Mr. Betancourt for its likelihood of preserving life
 80 for a while longer, it would not return him to a
 81 state of autonomous self-determination. By pre-
 82 venting death for some other (non-VS) patient in
 83 need of a kidney, on the other hand, the transplant
 84 would preserve both life and autonomy, and
 85 therefore the intervention would be more effica-
 86 cious if given to the non-VS patient. Distributive
 87 justice therefore demands that patients such as
 88 Mr. Betancourt or Ms. Schiavo not be placed on
 89 organ transplant waiting lists, because the scarcity
 90 of resources in that circumstance is far more
 91 acute.

92 Finally, many of these well-known cases
 93 revolve around families that claim that the clin-
 94 ically diagnosed VS patient does respond in pur-
 95 poseful ways, opposing the physicians who claim
 96 that the patient is permanently unconscious. This
 97 occurred in both Ms. Schiavo and Mr. Betancourt's
 98 case. These claims from the family should not
 99 be ignored or dismissed as wishful thinking. The
 100 diagnosis of the VS is problematic and suffers
 101 many flaws, as discussed above. Not least of these
 102 flaws, the misdiagnosis rate is around 40%; both
 103 Mr. Betancourt and Ms. Schiavo had a 2 in 5
 104 chance of not being in a VS, despite their having
 105 received that diagnosis.

106 Further, recall that the diagnosis can be nei-
 107 ther confirmed nor refuted by postmortem autopsy,
 108 by imaging tests, or by electrophysiologic tests.

1 The diagnosis is essentially a clinician's deter-
 2 mination that the behavioral repertoire of some
 3 particular patient, which can include blinking,
 4 grunting, crying, smiling, movement of eyes and
 5 extremities, and more, is not "purposeful." If the
 6 family, who spends far more time with the patient,
 7 believes that the patient is exhibiting some signs
 8 of awareness, this should not be ignored. Of
 9 course it might very well be wishful thinking on
 10 the part of the family, and the well-trained clin-
 11 ian's observational skills should ordinarily be
 12 trusted more than the non-clinician's. Nevertheless,
 13 as we've argued above, there is far too much
 14 uncertainty surrounding the diagnosis to assert a
 15 stark contrast between the VS and MCS patient;
 16 and the MCS patient *is* a subject of experiences.
 17 Given these uncertainties, we should not presume
 18 that Mr. Betancourt was completely lacking in all
 19 experiences, nor that he lacked all psychological
 20 states. *A fortiori*, we should not base normative
 21 conclusions about resource allocation on this
 22 uncertain medical/descriptive claim.

23 CONCLUSION

24 The impairments associated with the nearly brain
 25 dead such as those in a vegetative or minimally
 26 conscious state are profound, and result in the
 27 complete or near-complete loss of all cognitive
 28 function as well as total dependence on caregivers
 29 for all basic needs. This situation of extraordinary
 30 cognitive dysfunction (or complete lack of func-
 31 tion), coupled with the presence of some remain-
 32 ing biological function, might plausibly lead one
 33 to wonder if it would be unjust to allocate scarce
 34 medical resources in the maintenance of such a
 35 patient, when there are so many others who could
 36 presumably benefit more. Furthermore, using
 37 resources to maintain a brain-dead individual—
 38 who is legally dead—can plausibly seem even more
 39 unjust for the same reason.

40 In this chapter we have argued that this is
 41 not so, or at least, it is not always so. Social policy
 42 on health care resource distribution should be
 43 guided by the understanding that we do not all
 44 share the same basic worldview or value system, but
 45 nonetheless must decide how to allocate resources
 46 in a way that all can recognize as reasonable and
 47 based on relevant considerations. One way of doing
 48 this is to begin with a pool of potential claimants
 49 on resources, the moral community, and then
 50 split and rank that pool according to well-accepted
 51 principles. While there is no consensus on the
 52 fundamental determinants of human moral worth,
 53 all three of the components discussed above are

intuitive, widely endorsed, and based in long-
 54 standing philosophical and religious tradition. 55
 Since even the most profoundly impaired (includ-
 56 ing the brain dead) satisfy at least one of those 57
 criteria, we argue that they should be treated "as 58
 if" they are members of the moral community, on 59
 the grounds of tolerance, the lack of consensus 60
 on what determines moral standing, and on the 61
 ground that reasonable people do in fact treat them 62
 as having moral standing, for reasons that all can 63
 at least acknowledge as relevant. Therefore they 64
 are potential claimants on health care resources. 65
 As a result, resources such as skilled nursing care, 66
 antibiotics, and even dialysis ought to be allocated 67
 to the profoundly neurologically impaired, should 68
 this be the decision made by an appropriate sur- 69
 rogate, and this is a just use of resources.¹¹ 70

However, it is also well accepted that in the 71
 face of extreme scarcity of medical resources, 72
 efficacy is relevant. While "standard" medical 73
 treatments such as those mentioned above can be 74
 justly allocated to those with profound neurologi- 75
 cal impairments, it would not be just to allocate 76
 extremely scarce resources to them, such as trans- 77
 plantable organs. In this circumstance, efficacy 78
 should be one of the guiding principles of resource 79
 distribution. Since it would be more efficacious to 80
 transplant an organ into a patient for whom both 81
 life and autonomy can be preserved, than a patient 82
 for whom only biological life can be preserved, 83
 justice demands that the organ go to the former. 84

Notes

1. In the context of the cited paper, Brody is in the 86
 midst of a general discussion of several different ethical 87
 questions raised by the vegetative patient, providing a 88
 broad overview of different positions that one might 89
 take. The position on justice stated above is only one 90
 of them. 91

2. Nair-Collins has argued elsewhere (Collins 2009; 92
 2010b; Nair-Collins 2010) that the orthodox view is 93
 mistaken: brain-dead individuals are biologically alive. 94
 Many other authors have challenged the orthodox view 95
 as well. For the orthodox view, see Bernat 1998; Bernat, 96
 Culver, and Gert 1981; and President's Commission 97
 1981. 98

3. Some use the word "person" to mean something 99
 like rational, autonomous, moral agent, capable of 100
 having and giving reasons, of guiding her behavior in 101
 order to achieve her goals in light of her reasons, and 102
 able to be held morally responsible for her behavior. 103
 Such a person would be competent to accept or forgo a 104
 medical procedure. Here we use the terms "moral 105
 agent" or "agent" to mark this category, and "person" in 106
 a weaker sense, as the locus of psychological states, or 107

500 DILEMMAS AND PRIORITIES

1 the experiencing self. Thus a severely demented person
 2 who still has psychological states (she can feel pain, for
 3 example) but is no longer capable of having and giving
 4 reasons and pursuing her goals in light of them (etc.) is
 5 not an agent, but is a person, on this use of terms.

6 4. Since the MCS patient is able to follow com-
 7 mands and gesture yes/no answers, thereby communi-
 8 cating, it is reasonable to suppose that she might have
 9 some rudimentary goals or desires.

10 5. As an aside, we should note that we do not base this
 11 claim on vague worries about the ineffability of conscious-
 12 ness, nor on the presumed non-reducibility of psycho-
 13 logical states, nor on the ancient problem of other minds.
 14 We are fully confident that consciousness, intentionality,
 15 and all other mental capacities can be eventually reduc-
 16 tively explained in naturalistic terms, and in particular, in
 17 terms of neurological states. See Collins (2010a) for one of
 18 our views on naturalistic explanations of mind.

19 6. In chapter XVII, section i, paragraph 4, note b of
 20 The Principles of Morals and Legislation, Jeremy
 21 Bentham writes, "What else is it that should trace the
 22 insuperable line [between those who deserve moral
 23 consideration and those who do not]? Is it the faculty
 24 of reason, or, perhaps, the faculty of discourse? But a
 25 full-grown horse or dog, is beyond comparison a more
 26 rational, as well as a more conversible animal, than an
 27 infant of a day, or a week, or even a month, old. But
 28 suppose the case were otherwise, what would it avail?
 29 the question is not, Can they reason? nor, Can they
 30 talk? but, Can they suffer? [sic] (Bentham 1996, 283)"

31 7. See McPherson 1984 for a discussion of the
 32 moral patient as one who can be helped or harmed by
 33 an action, or one who has either rights or interests. The
 34 concept of a moral patient is associated with the animal
 35 rights literature, as in Regan 1983 and Singer 1975,
 36 since it is a category that includes sentient animals.

37 8. We borrow this basic idea from Rawls's concept
 38 of an overlapping consensus (1996, 2005).

39 9. Although hers was a case of VS, not MCS, recall
 40 that we have argued above that the descriptive/medical
 41 distinction between the two is far too tenuous to base
 42 any normative judgments on that distinction. Thus we
 43 should treat VS cases like MCS cases for moral pur-
 44 poses, and that includes treatment plans that include
 45 comfort care and pain control.

46 10. In their influential account of futility,
 47 Schneiderman, Jecker, and Jonsen (1990) argue that
 48 treatment for patients in VS is qualitatively futile; that
 49 is, some measurable outcome might be achieved, but
 50 no benefit to the patient can be appreciated by the
 51 patient, since she is unconscious. This depends on,
 52 first, the descriptive claim that every patient diagnosed
 53 as VS is indeed entirely unconscious, a claim that we
 54 believe should be qualified to a more agnostic one of
 55 uncertainty about the presence of psychological states,
 56 as discussed above. But furthermore, it also depends

on a normative claim about the appropriate goals of 57
 medical care. While the views of Schneiderman et al. 58
 are certainly among the range of reasonable views on 59
 this issue, the preservation of biological life is also 60
 among that range. In a pluralistic society, we should be 61
 willing to accept different fundamental value judg- 62
 ments, while accounting for constraints of reasonable- 63
 ness and fair use of resources. 64

11. It is worth noting that nothing that we have said 65
 here should be construed as asserting that treatment 66
 should be forced upon patients or surrogates who do 67
 not wish it. 68

References

American Heart Association (2010). *Heart Disease and Stroke Statistics—2010 Update*. Dallas, TX: American Heart Association. 71

Andrews, K., Murphy, L., Munday, R., & Littlewood, C. (1996). Misdiagnosis of the vegetative state: Retrospective study in a rehabilitation unit. *BMJ (Clinical Research Ed.)* 313(7048):13–16. 74

Ashwal, S. (2004). Pediatric vegetative state: Epidemiological and clinical issues. *Neurorehabilitation* 19(4):349–360. 77

Bauchamp, T.L. & Childress, J.F. (2009). *Principles of Biomedical Ethics*, 6th edition. New York and Oxford: Oxford University Press. 82

Beaumont, J.G., & Kenealy, P.M. (2005). Incidence and prevalence of the vegetative and minimally conscious states. *Neuropsychological Rehabilitation* 15(3–4):184–189. 84

Bentham, J. (1996). *An Introduction to the Principles of Morals and Legislation*. Edited by J.H. Burns & H.L.A. Hart. Oxford: Oxford University Press. 88

Bernat, J.L. (1998). A defense of the whole-brain concept of death. *Hastings Center Report* 28(2):14–23. 90

Bernat, J.L. (2006). Chronic disorders of consciousness. *Lancet* 367 (9517):1181–1192. 92

Bernat, J.L., Culver, C., & Gert, B. (1981). On the definition and criterion of death. *Annals of Internal Medicine* 94:389–394. 94

Betancourt v. Trinitas Regional Medical Hospital (2009). Superior Court, Union County, NJ. 98

Block, N. (1995). On a confusion about the function of consciousness. *Behavioral and Brain Sciences* 18: 227–247. 99

Boly, M., Faymonville, M., Peigneux, P., Lambermont, B., Damas, P., Del Fiore, G., Degueldre, C., Franck, G., Luxen, A., Lamy, M., Moonen, G., Maquet, P., & Laureys, S. (2004). Auditory processing in severely brain injured patients: Differences between the minimally conscious state and the persistent vegetative state. *Archives of Neurology* 61(2):233–238. 105

Bouckoms, A.J. (1989). Psychosurgery for pain. In P.D. Wall & R. Melzack (eds.), *Textbook of Pain*, 2nd ed. Edinburgh: Churchill Livingstone. 110

1 Brodal, A. (1981). *Neurological Anatomy in Relation*
2 to *Clinical Medicine*, 3rd ed. New York: Oxford
3 University Press.

4 Brody, B.A. (1988). Ethical questions raised by the per-
5 sistent vegetative patient. *Hastings Center Report*
6 18(1):33–37.

7 Bromm, B., & Desmedt, J.E. (1995). *Pain and the Brain: From Nociception to Cognition*. New York: Raven Press.

8 Caplan, A.L., McCartney, J.J., & Sisti, D.A., eds. (2006). *The Case of Terri Schiavo*. Amherst: Prometheus Books.

9 Casey, K.L., ed. (1991). *Pain and Central Nervous System Disease: The Central Pain Syndromes*. New York: Raven Press.

10 Childs, N.L., Mercer, W.N., & Childs, H.W. (1993). Accuracy of diagnosis of persistent vegetative state. *Neurology* 43(8):1465–1467.

11 Coleman, M.R., Davis, M.H., Rodd, J.M., Robson, T., Ali, A., Owen, A.M., & Pickard, J.D. (2009). Towards the routine use of brain imaging to aid the clinical diagnosis of disorders of consciousness. *Brain: A Journal of Neurology* 132(Pt 9):2541–2552.

12 Coleman, M.R., Rodd, J.M., Davis, M.H., Johnsrude, I.S., Menon, D.K., Pickard, J.D., & Owen, A.M. (2007). Do vegetative patients retain aspects of language comprehension? Evidence from fMRI. *Brain: A Journal of Neurology* 130(Pt 10):2494–2507.

13 Collins, M. (2009). Consent for organ retrieval cannot be presumed. *HEC Forum* 21(1):71–106.

14 Collins, M. (2010a). *The Nature and Implementation of Representation in Biological Systems*. PhD dissertation, Department of Philosophy, CUNY Graduate Center, New York.

15 Collins, M. (2010b). Reevaluating the dead donor rule. *Journal of Medicine and Philosophy* 35(2):154–179.

16 Daniels, N. (1985). *Just Health Care*. New York: Cambridge University Press.

17 Daniels, N. (2002). Justice, health, and health care. In R. Rhodes, M.P. Battin, & A. Silvers (eds.), *Medicine and Social Justice*, Vol. 1. Oxford: Oxford University Press.

18 Dasta, J.F., McLaughlin, T.P., Mody, S.H., & Piech, C.T. (2005). Daily cost of an intensive care unit day: The contribution of mechanical ventilation. *Critical Care Medicine* 33(6):1266–1271.

19 De Giorgio, C.M., Rabinowicz, A.L., & Gott, P.S. (1993). Predictive value of P300 event-related potentials compared with EEG and somatosensory evoked potentials in non-traumatic coma. *Acta Neurologica Scandinavica* 87(5):423–427.

20 Dworkin, R. (2000). *Sovereign Virtue: The Theory and Practice of Equality*. Cambridge: Harvard University Press.

21 Fields, A.I., Coble, D.H., Pollack, M.M., Cuerdon, T.T., & Kaufman, J. (1993). Outcomes of children in a persistent vegetative state. *Critical Care Medicine* 21(12):1890–1894.

22 Giacino, J.T. (2004). The vegetative and minimally conscious states: Consensus-based criteria for establishing diagnosis and prognosis. *Neurorehabilitation* 19(4):293–298.

23 Giacino, J.T., Ashwal, S., Childs, N., Cranford, R., Jennett, B., Katz, D.I., Kelly, J.P., Rosenberg, J.H., Whyte, J.J., Zafonte, R.D., & Zasler, N.D. (2002). The minimally conscious state: Definition and diagnostic criteria. *Neurology* 58(3):349–353.

24 Glass, I., Sazbon, L., & Groswasser, Z. (1998). Mapping “cognitive” event-related potentials in prolonged postcoma unawareness state. *Clinical EEG (Electroencephalography)* 29(1):19–30.

25 Gott, P.S., Rabinowicz, A.L., & DeGiorgio, C.M. (1991). P300 auditory event-related potentials in nontraumatic coma. Association with Glasgow Coma Score and awakening. *Archives of Neurology* 48(12):1267–1270.

26 Jennett, B. (2002a). The vegetative state. *Journal of Neurology, Neurosurgery, and Psychiatry* 73(4): 355–357.

27 Jennett, B. (2002b). *The Vegetative State. Medical Facts, Ethical and Legal Dilemmas*. Cambridge: Cambridge University Press.

28 Jennett, B., & Plum, F. (1972). Persistent vegetative state after brain damage: A syndrome in search of a name. *Lancet* 1:734–737.

29 Jones, S.J., Vaz Pato, M., Sprague, L., Stokes, M., Munday, R., & Haque, N. (2000). Auditory evoked potentials to spectro-temporal modulation of complex tones in normal subjects and patients with severe brain injury. *Brain: A Journal of Neurology* 123(Pt 5):1007–1016.

30 Kahane, G., & Savulescu, J. (2009). Brain damage and the moral significance of consciousness. *Journal of Medicine and Philosophy* 34(1):6–26.

31 Kaliski, Z., Morrison, D.P., & Meyers, C.A. (1985). Medical problems encountered during rehabilitation of patients with head injury. *Archives of Physical Medicine and Rehabilitation* 66:25–29.

32 Kassubek, J., Juengling, F.D., Els, T., Spreer, J., Herpers, M., Krause, T., et al. (2003). Activation of residual cortical network during painful stimulation in long-term postanoxic vegetative state: A $^{15}\text{O}-\text{H}_2\text{O}$ PET study. *Journal of the Neurological Sciences* 212:85–91.

33 Kinney, H.C., Korein, J., Panigrahy, A., Dikkes, P., & Goode, R. (1994). Neuropathological findings in the brain of Karen Ann Quinlan. The role of the thalamus in the persistent vegetative state. *New England Journal of Medicine* 330:1469–1475.

34 Korein, J., & Machado, C. (2004). Brain death—Updating a valid concept for 2004. In C. Machado & D.A. Shewmon (eds.), *Brain Death and Disorders of Consciousness*. Springer.

502 DILEMMAS AND PRIORITIES

1 Laureys, S., Faymonville, M.E., Degueldre, C., Del 58
 2 Fiore, G., Damas, P., Lambermont, B., Janssens, N., 59
 3 Aerts, J., Franck, G., Luxen, A., Moonen, G., Lamy, 60
 4 M., & Maquet, P. (2000). Auditory processing in 61
 5 the vegetative state. *Brain* 123:1589–1601.
 6 Laureys, S., Faymonville, M.E., Peigneux, P., Damas, P., 62
 7 Lambermont, B., Del Fiore, G., Degueldre, C., Aerts, 63
 8 J., Luxen, A., Franck, G., Lamy, M., Moonen, G., & 64
 9 Maquet, P. (2002). Cortical processing of noxious 65
 10 somatosensory stimuli in the persistent vegetative 66
 11 state. *Neuroimage* 17(2):732–741.
 12 Lee, H., Manns, B., Taub, K., Ghali, W.A., Dean, S., 67
 13 Johnson, D., & Donaldson, C. (2002). Cost analysis 68
 14 of ongoing care of patients with end-stage renal 69
 15 disease: The impact of dialysis modality and dialy- 70
 16 sis access. *American Journal of Kidney Diseases* 71
 17 40(3):611–622.
 18 Marosi, M., Prevec, T., Masala, C., Bramanti, P., 72
 19 Giorganni, R., Luef, G., Berek, K., Saltuari, L., & 73
 20 Bramanti, M. (1993). Event-related potentials in 74
 21 vegetative state. *Lancet* 341(8858):1473–1473.
 22 McPherson, T. (1984). The moral patient. *Philosophy* 75
 23 59:171–184.
 24 MetLife Mature Market Institute (2009). *Market Survey 76
 25 of Long-term Care Costs: The 2009 MetLife Market 77
 26 Survey of Nursing Home, Assisted Living, Adult Day 78
 27 Services, and Home Care Costs*. Westport, CT: 79
 28 MetLife Mature Market Institute.
 29 Monti, M.M., Vanhaudenhuyse, A., Coleman, M.R., 80
 30 Boly, M., Pickard, J.D., Tshibanda, L., Owen, A.M., 81
 31 & Laureys, S. (2010). Willful modulation of brain 82
 32 activity in disorders of consciousness. *New England 83
 33 Journal of Medicine* 362(7): 579–589.
 34 Multi-Society Task Force on PVS. (1994a). Medical 84
 35 aspects of the persistent vegetative state (1). *New 85
 36 England Journal of Medicine* 330(21):1499–1508.
 37 Multi-Society Task Force on PVS. (1994b). Medical 86
 38 aspects of the persistent vegetative state (2). *New 87
 39 England Journal of Medicine* 330(22):1572–1579.
 40 Nagel, T. (1974). What is it like to be a bat? *Philosophical 88
 41 Review* 83(4):435–450.
 42 Nair-Collins, M. (2010). Death, brain death, and the 89
 43 limits of science: Why the whole-brain concept 90
 44 of death is a flawed public policy. *Journal of Law, 91
 45 Medicine, and Ethics* 38(3):667–683.
 46 New Jersey Declaration of Death Act (1991).
 47 New York State Department of Health (2005). *Guide- 92
 48 lines for Determining Brain Death*. Available at: 93
 49 <http://www.health.state.ny.us/professionals/doctors/guidelines/determination_of_brain_death/docs/determination_of_brain_death.pdf>.
 50 Olick, R.S. (1991). Brain death, religious freedom, and 94
 51 public policy: New Jersey's landmark legislative 95
 52 initiative. *Kennedy Institute of Ethics* 1(4):275–288.
 53 Owen, A.M., & Coleman, M.R. (2008a). Detecting 96
 54 awareness in the vegetative state. *Annals of the New 97
 55 York Academy of Sciences* 1129:130–138.
 56 Laureys, A.M., & Coleman, M.R. (2008b). Functional 98
 57 neuroimaging of the vegetative state. *Nature Reviews Neuroscience* 9(3):235–243.
 58 Owen, A.M., Coleman, M.R., Boly, M., Davis, M.H., 99
 59 Laureys, S., & Pickard, J.D. (2006). Detecting 100
 60 awareness in the vegetative state. *Science* 313:1402.
 61 Owen, A.M., Coleman, M.R., Boly, M., Davis, M.H., 101
 62 Laureys, S., & Pickard, J.D. (2007). Using func- 102
 63 tional magnetic resonance imaging to detect covert 103
 64 awareness in the vegetative state. *Archives of Neu- 104
 65 rology* 64(8):1098–1102.
 66 Owen, A.M., Coleman, M.R., Menon, D.K., Berry, E.L., 105
 67 Johnsrude, I.S., Rodd, J.M., Davis, M.H., & Pickard, 106
 68 J.D. (2005). Using a hierarchical approach to investi- 107
 69 gate residual auditory cognition in persistent vegeta- 108
 70 tive state. *Progress in Brain Research* 150:457–471.
 71 Owen, A.M., Coleman, M.R., Menon, D.K., Johnsrude, 109
 72 I.S., Rodd, J.M., Davis, M.H., Taylor, K., & Pickard, 110
 73 J.D. (2005). Residual auditory function in persis- 111
 74 tent vegetative state: a combined PET and fMRI 112
 75 study. *Neuropsychological Rehabilitation* 15(3–4): 113
 76 290–306.
 77 Plum, F., & Posner, J.B. (1980). *The Diagnosis of Stupor 114
 78 and Coma*, 3rd ed. Philadelphia: F.A. Davis.
 79 President's Commission for the Study of Ethical Prob- 115
 80 lems in Medicine and Biomedical and Behavioral 116
 81 Research. (1981). *Defining Death: Medical, Legal, 117
 82 and Ethical Issues in the Determination of Death*. 118
 83 Washington, DC: U.S. Government Printing Office.
 84 Rappaport, M., McCandless, K.L., Pond, W., & Kraft, 119
 85 M.C. (1991). Passive P300 response in traumatic 120
 86 brain injury patients. *Journal of Neuropsychiatry 121
 87 and Clinical Neurosciences* 3(2):180–185.
 88 Rawls, J. (1996). *Political Liberalism*, paperback ed. 122
 89 New York: Columbia University Press.
 90 Rawls, J. (2005). *Political Liberalism*, 2nd ed. New York: 123
 91 Columbia University Press.
 92 Regan, T. (1983). *The Case for Animal Rights*. Berkeley, 124
 93 CA: University of California Press.
 94 Rhodes, R. (2001). Death and dying. *Encyclopedia of 125
 95 Life Sciences* 1–7.
 96 Rhodes, R. (2005). Justice in medicine and public 126
 97 health. *Cambridge Quarterly of Healthcare Ethics: 127
 98 The International Journal of Healthcare Ethics* 128
 99 Committees 14(1):13–26.
 100 Rhodes, R. (2007). The professional responsibilities of 129
 101 medicine. In R. Rhodes, L.P. Francis, & A. Silvers 130
 102 (eds.), *The Blackwell Guide to Medical Ethics*. 131
 103 Blackwell Publishing.
 104 Rosenthal, D.M. (1997). A theory of consciousness. 132
 105 In N. Block, O. Flanagan, & G. Guzeldere (eds.), 133
 106 *The Nature of Consciousness: Philosophical Debates*. 134
 107 Cambridge and London: MIT Press. A Bradford 135
 108 Book.
 109 Schnakers, C., Vanhaudenhuyse, A., Giacino, J., 136
 110 Ventura, M., Boly, M., Majerus, S., Moonen, G., & 137
 111 Laureys, S. (2009). Diagnostic accuracy of the 138

Justice, Profound Neurological Injury, and Brain Death 503

1 vegetative and minimally conscious state: Clinical 18
 2 consensus versus standardized neurobehavioral 19
 3 assessment. *BMC Neurology* 9:35. 20

4 Schneiderman, L.J., Jecker, N.S., Jonsen, A.R. (1990). 21
 5 Medical futility: Its meaning and ethical implications. 22
 6 *Annals of Internal Medicine* 112(12): 949–954. 23

7 Shewmon, D.A. (2004). The ABC of PVS: Problems 24
 8 of definition. In C. Machado & D.A. Shewmon 25
 9 (eds.), *Brain Death and Disorders of Consciousness*. 26
 10 Springer. 27

11 Singer, P. (1975). *Animal Liberation*. New York: New 28
 12 York Review/Random House. 29

13 Toutant, C. (2010). NJ court considers hospital's right 30
 14 to end treatment for vegetative patient. *New Jersey 31
 15 Law Journal*, May 10, 2010. 32

16 U.S. Census Bureau (2008). Monthly population esti- 33
 17 mates for the United States: April 1, 2000 to 34

December 1, 2008. Available at: <http://www.census.gov/popest/data/historical/2000s/vintage_2007/index.html>.

Veatch, R.M. (1975). The whole-brain oriented concept of death: An outmoded philosophical formulation. *Journal of Thanatology* 3:13–30.

Veatch, R.M. (1999). The conscience clause: How much individual choice in defining death can our society tolerate? In S.J. Youngner, R.M. Arnold, & R. Shapiro (eds.), *The Definition of Death: Contemporary Controversies*. Baltimore: The Johns Hopkins Press.

Veatch, R.M. (2004). Abandon the dead donor rule or change the definition of death? *Kennedy Institute of Ethics Journal* 14:261–276.

Yingling, C.D., Hosobuchi, Y., & Harrington, M. (1990). P300 as a predictor of recovery from coma. *Lancet* 336(8719):873–873.

